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The sharp indenters such as Berkovich and conical indenters have a geometrical self-
similarity so that we can obtain only one parameter from an indentation loading curve,
which makes different materials have the same load–displacement relation. Most studies
to evaluate elastic–plastic properties by using the geometrical self-similar indenter have
therefore tried to use dual/plural indentation techniques, on the basis of the concept of
representative strain/stress varying with the indenter angle. However, any suggested rep-
resentative concept is not universally operative for real materials. In this work, we suggest
a method of material property evaluation without using the concept of representative
strain. We begin the work by studying the characteristics of load–depth curves of conical
indenters via finite element (FE) method. From FE analyses of dual-conical indentation, we
investigate the relationships between indentation parameters and load–depth curves. The
projected contact diameter is expressed as a function of the indenter angle, tip-radius, and
material properties, which allows us to simply predict the elastic modulus. Two mapping
functions for two indenter angles (45� and 70.3�) are presented to find the two unknowns
(yield strain and strain-hardening exponent) via dual indentation technique. The method
provides elastic modulus, yield strength and strain-hardening exponent with an average
error of less than 5%. The method is valid for any elastically deforming indenters. We also
discuss the sensitivity of measured properties to the load–displacement curve variation,
and the difference between conical and Berkovich indenters.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The instrumented indentation test is a method to ex-
tract material properties from indentation load–depth
curves with micro specimens or parts of mechanical struc-
tures in use (Chen et al., 2006, 2010; Cook and Pharr, 1990;
Giannakopoulos and Larsson, 1997; Giannakopoulos and
Suresh, 1999; Huber and Tsakmakis, 1999a,b; Kermouche
et al., 2008; Lan and Venkatesh, 2007; Lee et al., 2005; Liao
et al., 2009; Ogasawara et al., 2006a,b, 2009; Oliver and
Pharr, 1992; Suresh and Giannakopoulos, 1998; Xia et al.,
2007). The contact area and load–displacement curves to
. All rights reserved.

: +82 2 712 0799.
).
measure the hardness and elastic modulus are fundamen-
tal and important data for indentation test. However, it is
quite difficult to measure or predict the contact diameter
due to imperfection or tip-blunting of indenter. Based on
Hertz contact mechanics, many studies on evaluating the
actual contact area and geometric deviation of indenter
from its nominal geometry have been performed (Borodich
et al., 2003; Borodich and Keer, 2004).

There should be a one-to-one match between the load–
depth curve obtained from an indentation test and its
material properties. However, some materials having dif-
ferent material properties may show the same load–depth
curve due to the geometrical self-similarity of sharp inden-
ters (Capehart and Cheng, 2003; Chen et al., 2007; Cheng
and Cheng, 1998; Lee et al., 2008; Tho et al., 2004). Chen
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Fig. 1. Schematic illustration of a P–h curve of elastic–plastic material
under instrumented sharp indentation (Lee et al., 2008).
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et al. (2007) and Lee et al. (2008) demonstrated that count-
less materials can have the same Kick’s law coefficient C
despite their different material properties. Dual (plural)
sharp indenters with dissimilar angles can be therefore
used to solve this problem. In previous studies (Bucaille
et al., 2003; Cao and Lu, 2004; Chollacoop et al., 2003;
Ogasawara et al., 2005, 2006a; Shim et al., 2008), unique
Fig. 2. Schematic of sharp indentation

Fig. 3. Overall mesh design using ax
solutions were attempted by using the concept of repre-
sentative strain eR which varies with the half-included an-
gle of indenter.

The loading curves from sharp indenters generally fol-
low the Kick’s law relation.

P ¼ Ch2 ð1Þ

Here P is the indentation load, h is the measured depth
from reference surface and C is the coefficient of the Kick’s
law. Pmax is the maximum load at the maximum indenta-
tion depth hmax, and the initial unloading slope S is defined
as dP/dh at h = hmax as depicted in Fig. 1. Kick’s law is valid
for the ideal sharp indenter, but the tip-radius effect breaks
the Kick’s law and the corresponding self-similarity. For
eliminating the effect of tip-radius, Lee et al. (2008) sug-
gested the corrected Kick’s law as following equation.

P ¼ Cðhþ hgÞ2; hg ¼ R
1

sina
� 1

� �
ð2Þ

Here hg is the gap between the indenters with zero and fi-
nite tip-radius (Fig. 2). Eq. (2) is not valid when the effect of
the tip-radius is dominant in shallow indentation. How-
ever, as the indentation depth increases the effect of the
tip-radius decreases so Eq. (2) became valid. In Fig. 2, ht

means the expected indentation depth (ht = h+hg) for an
ideally sharp indenter.
profiles with finite tip-radius.

isymmetric conical indenter.
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Fig. 4. Load–depth curves for various values of indentation parameters.
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Fig. 5. P/Pmax vs. h2 curves for different material properties with the same
C and E for (a) a = 70.3� and (b) a = 45�.
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P/h2 is a constant value independent of indentation
depth, so the representative strain which shows the defor-
mation state of materials has a unique value. In most pre-
vious studies, the main objective is to determine the way of
defining the representative strain and its value. They tried
to reduce the number of indentation parameters using the
representative strain. The concept of the representative
strain was introduced by Tabor (1951) (eR = 0.08 for Vick-
ers indentation). Dao et al. (2001) (eR = 0.033) found out
that stress–strain curves of materials having the same
Kick’s law coefficient C exhibit the same true stress at the
plastic strain of 3.3% for 70.3� conical indentation. Dao
et al. (2001) presented then the following dimensionless
function.

P
Ee

rR
;n

� �
¼ C

rR
ð3Þ

Here rR is the representative stress corresponding to eR, n
is the strain-hardening exponent, and Ee is the effective
modulus. Dao et al. (2001) used the following relation be-
tween representative stress and representative strain.

rR ¼ ro 1þ E
ro

eR

� �n

ð4Þ

Here ro is the yield strength and E is the elastic modulus.
The concepts of dual conical indentation were suggested
by Bucaille et al. (2003) (eR = 0.105 cot a) and Chollacoop
et al. (2003) (eR = �2.185 � 10�3a + 0.1894). Here a is the
half-included angle of a conical indenter (Fig. 2). They ob-



Table 1
Comparison of C values with three half-included angles.

a (�) Kick’s law coefficient C (GPa)

ro = 800 MPa ro = 420 MPa Gap (%) ro = 800 MPa ro = 600 MPa Gap (%)
n = 5.0 n = 2.6 n = 5.0 n = 3.7

45.0 17.6 20.2 14.9 17.6 17.5 0.3
60.0 43.9 46.7 6.4 43.9 41.7 4.5
70.3 96.5 97.0 0.6 96.5 88.7 8.1

Table 2
Material properties for FE analyses.

Material property of indenters Material property Values used in FEA

WC (EI = 537 GPa, mI = 0.24) Young’s modulus (GPa) 70, 200, 300
Poisson’s ratio 0.3
Yield strength (MPa) 200, 400, 600, 800, 1200, 1600, 2000
Strain-hardening exponent 1.1, 2, 3, 5, 7, 10, 13, 20
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tained multiple equations by substituting eR and rR values
of two indenter angles into Eq. (4), and then determined ro

and n. Thereafter, Cao and Lu (2004) suggested some con-
ditions which should be satisfied to use the above method.
Ogasawara et al. (2005) (eR = 0.0139 cot a for 70.3� conical
R/hmax (mm)
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indentation defined the representative strain as a function
of plastic strain related to axisymmetric deformation. Their
representative stress corresponding to the representative
strain is determined by the following Eq. (5).

rR ¼ R 2
rR

E
þ 2eR

� �n
ð5Þ

Chen et al. (2007) and Ogasawara et al. (2006) noted
that C/rR varies linearly with respect to Ee/rR when its va-
lue is very small (elastic limit), and C/rR asymptotically ap-
proaches to a constant value as Ee/rR increases (rigid
plastic limit). They suggested the function C/rR using the
elastic limit and the rigid plastic limit.

P ¼ C
rR
¼ 1

me
Ee
rR

þ 1
mp

 !�1

ð6Þ

Here me is the slope of the linear region, mp is the rigid
plastic limit. However, some materials having different
properties still show almost the same C in dual (or plural)
indentation, so Chen et al. (2007) named them ‘‘mystical
materials’’. As the difference of the angles, Da, gets bigger,
the region of ‘‘mystical materials’’ decreases. However,
Chen et al. (2007) have shown neither a systematic way
1/n
0.0 0.2 0.4 0.6 0.8 1.0

c2 [=
(h

c| P
m

ax
+

h g)
 / 

(h
m

ax
+

h g)
]

0.6

0.8

1.0

1.2

1.4

Reg. line

0.001
0.002
0.003

0.004
0.006
0.008
0.010

α = 70.3o,  R/hmax = 0.5

Pile-up
Sink-in

εo

Fig. 8. c2 vs. 1/n curves for various values of yield strain.
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of distinction nor an application to the non-power law
materials.

As was stated above, the definitions and the variations
of the representative strain with indenter angles were dif-
ferent in each previous study. In addition, suggested defini-
tions of eR are disputable in their representativeness (Lee
et al., 2010). We can imagine that two true stress–strain
curves could be almost the same until the strain is less
than eR but be different out of the region. If the representa-
tive strain is a function of indenter angle only, though
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material properties are different, two materials must have
the same eR and rR. If the representative strain is smaller
than about 0.3, the load–depth curves of two materials
are different. This means that two materials which show
the different load–depth curves have same eR and rR.
Therefore, the representative strain must have a large va-
lue. Chaudhri (1998) and Giannakopoulos and Suresh
(1999) suggested the eR = 0.25–0.36, but these values are
too large to present the strain field of subindenter. To be
representative, eR and rR should therefore vary with the
material properties, and be a unique value for each
material.

Swaddiwudhipong et al. (2005) and Le (2008, 2009)
found the relationship between the characteristics of
the load–displacement curves and the properties of elas-
tic–plastic materials. Then, they built a reverse analysis
algorithm for dual indentation. They predicted material
properties using the change of various indentation vari-
ables such as C, unloading slope, and loading–unloading
energies. Swaddiwudhipong et al. (2005) used the ratio
of Ee/ro and n as two key parameters. However, the effec-
tive Young’s modulus Ee cannot express the real material
property, and the ratio of the Young’s modulus to yield
strength E/ro is more important than the ratio of the
effective modulus to yield strength Ee/ro, based on our
analysis. In addition, the maximum variation of predicted
yield strength with experimental scatter for the loading
curve is about 70%.

Like these, prior indentation theories have inherent
restrictions on measurement of practical material proper-
ties. Even though FE analysis was used in some works, lim-
ited range of material property was considered and
inappropriate methods were used as mentioned above.
Only with verification for a wider range of real materials,
the previous methods could be practical and reliable.

In this work, we suggest a method of material property
evaluation by using a reverse analysis, which does not
adopt the concept of representative strain. In the spherical
indentation, it is difficult to evaluate the material proper-
ties without the defining a representative strain. In con-
trast, when geometrically self-similar indenters are used,
the multiple indentations can be used to obtain the equa-
tions as many as the unknown values and it does not re-
quire defining the representative strain value. To
establish the equations, we investigate the aspect of mate-
rial deformations (pile-up/sink-in) near the contact area. If
the measured (or calculated) contact area is inaccurate,
large errors in predicting the elastic modulus or hardness
may accompany. We also examine the contact mechanics
of indenter with tip radius. In engineering practice, the in-
denter is not perfectly sharp but has a tip radius. Therefore,
in shallow indentation there is only spherical contact; the
material deformation in deep indentation obeys the coni-
cal contact mechanics. In this work, we analyzed the vari-
ation of contact radius and load–displacement curves with
indenter tip radius. Based on the method proposed by Lee
et al. (2008), we removed the effect of tip radius. Moreover,
we investigate the variation of load–displacement curve
with indent angle.

The paper is organized as follows. Section 2 shows the
FE model (ABAQUS, 2007) and conditions for conical
indentation. We observe the effect of material properties,
friction coefficient and conical indenter’s angle on the
load–depth curves in Section 3. Section 4 presents the
regression functions using the correlation among yield
strains, strain hardening exponents and indentation load–
depth curves. In addition, we provide the calculation
method for contact diameter using regression function of
material properties. We then propose a dual-conical inden-
tation technique and verify the method. We also discuss
the sensitivity of measured properties on the load–depth
curve in Section 5. Finally, Section 6 shows the difference
between conical and Berkovich indenters.

2. Finite element analysis

Fig. 3 shows the 2D FE model of the numerical conical
indentation test that has the same projected contact area
as the Berkovich indenter for the same indentation depth.
We perform the finite element (FE) analyses using ABA-
QUS. We make an axisymmetric model considering that
both load and configuration are axisymmetric. We carry
out nonlinear geometry analyses using isotropic elastic–
plastic material, which obeys J2 flow theory.

We use the four-node axisymmetric element CAX4
(ABAQUS, 2007). We performed finite element analyses
while changing the size of minimum element e, according
to the indenter tip-radius R. It turned out that when R/e >
120, the element size effect is negligible, so we choose
R/e = 160 as the minimum element size. Multi-Point Con-
straints (MPC) is conveniently used at the transition region
where element size changes, but constrained mid-nodes of
MPC tend to give discrete stress–strain values. We thus
adopt trapezoidal elements in the transition region near
the contact surface, and use MPC in only the transition re-
gion far from the contact surface. FE model consists of
about 24900 4-node axisymmetric elements (CAX4) and
25400 nodes. We place contact surfaces at both material
and indenter surfaces. Axisymmetric boundary conditions
are imposed on the nodes on the axisymmetric axis. The
indenter moves down to penetrate the material the bottom
of which is fixed.

The Young’s modulus and Poisson’s ratio of WC indenter
are taken by an ultrasonic test, which values are 537 GPa



Fig. 13. Flow chart for determination of material properties.
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and 0.24, respectively. To confirm the effect of the tip-radii,
we vary the ratio of the tip-radius to the maximum
indentation depth R/hmax between 0.5 and 2. Indentation
formulas that developed WC indenter are valid even when
Young’s modulus and Poisson’s ratio of WC indenter are
substituted with those of diamond (Lee et al., 2008).
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We need a regression equation for stress–strain curve
and related material properties. The stress–strain curve
can be expressed with piecewise power relationship (Rice
and Rosengren, 1968).

et

eo
¼

r
ro

for r 6 ro

r
ro

� �n
for r > ro; 1 < n 61

8<
: ð7Þ

Here eo (�ro/E) is the yield strain and n is the strain-hard-
ening exponent. Total strain et is decomposed into elastic
and plastic strains (et = ee + ep). While many indentation
studies generally used Ramberg–Osgood stress–strain rela-
tion, we in the present work adopt Eq. (7), since the latter
provides a distinctive linear elastic region and conse-
quently distinctive yield strength.
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with Fig. 11).
3. Characteristics of indentation deformation

3.1. Deformation under indenter and characteristic of load–
depth curves

We investigated the effects of friction coefficient,
Young’s modulus, yield strength and strain hardening
exponent on load–depth curves via indentation FE analy-
ses. Fig. 4a shows load–depth curves with variation of fric-
tion coefficient f. Here Coulomb friction coefficient f is
varied from 0.1 to 0.4. Although load increases slightly
with friction coefficient f for the same indentation depth,
the difference is virtually negligible. While distributions
of stress and strain are substantially affected by the friction
coefficient, load–depth curves are almost independent of
friction coefficient. In this study, a method for the evalua-
tion of material properties is proposed with the value
f = 0.3, and the sensitivity of the method on the friction
coefficient is then discussed.

Fig. 4b shows the relations between modulus and load–
depth curve. Indentation load increases for the same
indentation depth as the Young’s modulus increases. The
effect of Young’s modulus on load–depth curves is less
than the other parameters but the effect cannot be ignored.
It is noteworthy that unloading curves vary sensitively
with Young’s modulus. Fig. 4c and d shows that indenta-
tion load increases with yield strength, but decreases with
strain hardening exponent for the same indentation depth.
In other words, all the material properties are related to
loading curves, and the slope of unloading curves is closely
related to Young’s modulus.

3.2. Characteristic of load–depth curves with indenter angles

Lee et al. (2008) reported that there are countless mate-
rials which have the same Kick’s law coefficient C despite
their different material properties. It means that stress–
strain curves obtained from load–depth curves for self-
similar indenters cannot be unique.

Fig. 5 shows the variations of load–displacement curves
for two sets of arbitrary materials with three different half-
included angles of indenter, a = 70.3�, 60.0� and 45.0�.
Fig. 5a and b represents the load–depth curves for (ro =
800 MPa, n = 5; ro = 420 MPa, n = 2.6) and (ro = 800 MPa,
n = 5; ro = 600 MPa, n = 3.7), respectively. Elastic moduli
of them are fixed as 200 GPa. Table 1 shows that gap of
C values for three indenter angles. Although there is no
significant difference in C between the two materials,
ro = 800 MPa, n = 5 and ro = 420 MPa, n = 2.6, for the angle
of the indenter a = 70.3�, the difference becomes about 15%
for a = 45�. In contrast to the previous case, the two mate-
rials, ro = 800 MPa, n = 5 and ro = 600 MPa, n = 3.7, show
8% deviation of C for the indenter angle 70.3� whereas
the difference is negligible for a = 45�. It means that two
materials can be distinguished by using the two or more
self-similar indenters. Note that when a lager indenter
angle range is used, load–displacement curves for sets of
arbitrary materials become quite separable. Based on this,
we can obtain the indentation formula which converts
load–depth curves to true stress–strain curves, and then
suggest a dual (or plural) indentation algorithm based on
FEA solutions for the material property evaluation. Table 2
shows representative material properties used in this
paper, which cover the range of material property of
general metals.

4. Indentation numerical approach based on finite
element analysis solution

4.1. Numerical formulas for young’s modulus evaluation

The slope of unloading curve, elastic recovery and con-
tact area are related with Young’s modulus (Sneddon,
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1965; Taljat et al., 1997). Pharr et al. (1992) reported that
the unloading curve is nonlinear, and the initial unloading
slope of curve has a close relation with Young’s modulus.
Pharr et al. (1992) suggested the theoretical formula as
follows:

E ¼ 1� m2

bd=S� ð1� m2
I Þ=EI

ð8Þ

Here d is actual projected contact diameter considering
the effect of pile-up/sink-in and S is initial unloading slope.
b is the correction factor that depends on material proper-
Table 3
Comparison of computed material properties with a WC indenter to those given.

ro/E
ro (MPa)

n Computed E (GPa) Error (%) Co

0.001 2 200.3 0.1 1
200 3 201.3 0.6 1

5 203.5 1.8 1
7 203.9 2.0 1

10 203.1 1.5 1
13 205.2 2.6 1
20 205.5 2.7 1

0.002 2 199.5 0.2 4
400 3 200.4 0.2 4

5 201.7 0.8 3
7 201.2 0.6 3

10 203.3 1.7 3
13 202.8 1.4 3
20 203.6 1.8 3

0.003 2 199.6 0.2 5
600 3 199.9 0.0 5

5 201.0 0.5 5
7 202.3 1.2 5

10 202.5 1.2 5
13 202.5 1.2 5
20 203.2 1.6 5

0.004 2 199.2 0.4 8
800 3 199.9 0.0 7

5 200.7 0.3 7
7 201.3 0.7 7

10 201.5 0.8 7
13 202.1 1.1 7
20 203.6 1.8 7

0.006 2 198.2 0.9 12
1200 3 200.1 0.1 12

5 200.2 0.1 12
7 199.6 0.2 11

10 200.4 0.2 11
13 200.6 0.3 11
20 200.6 0.3 11

0.008 2 198.3 0.9 16
1600 3 199.6 0.2 15

5 199.8 0.1 16
7 199.9 0.1 15

10 199.7 0.2 15
13 199.9 0.0 16
20 200.1 0.0 15

0.010 2 198.1 0.9 20
2000 3 197.8 1.1 21

5 199.5 0.3 19
7 199.1 0.4 20

10 200.0 0.0 19
13 200.1 0.0 19
20 200.0 0.0 19
ties and the indenter geometry. EI, mI and E, m are Young’s
modulus, Poisson’s ratio of the indenter and the specimen
respectively. Lee et al. (2008) studied the variation of b
with regression range and fitting function type. For regres-
sion of unloading slope, Lee et al. (2008) considered two
regression functions and two unloading ranges: power
law and linear fits, and 20% and 80% of unloading data.
They showed that b may be regarded as almost constant
for various indentation parameters such as Young’s modu-
lus, yield strain and strain-hardening exponent and inden-
ter tip-radius.
mputed ro (MPa) Error (%) Computed n Gap

98.3 0.9 2.0 0.00
97.2 1.4 3.0 0.01
95.4 2.3 4.9 0.06
97.8 1.1 7.0 0.01
99.0 0.5 10.0 0.02
97.0 1.5 12.7 0.27
97.2 1.4 19.1 0.91

05.0 1.3 2.0 0.00
04.8 1.2 3.0 0.01
97.3 0.7 5.0 0.04
98.3 0.4 6.9 0.07
98.5 0.4 10.0 0.02
97.5 0.6 12.9 0.13
99.0 0.3 19.9 0.14

98.7 0.2 2.0 0.00
91.8 1.4 3.0 0.02
92.9 1.2 4.9 0.06
96.8 0.5 7.0 0.00
91.3 1.5 9.7 0.30
93.3 1.1 12.6 0.39
93.4 1.1 19.1 0.95

00.7 0.1 2.0 0.00
97.8 0.3 3.0 0.00
94.6 0.7 5.0 0.03
95.2 0.6 7.0 0.05
88.0 1.5 9.7 0.30
90.3 1.2 12.6 0.39
87.8 1.5 18.4 1.59

44.6 3.7 2.0 0.01
02.6 0.2 3.0 0.00
01.0 0.1 5.0 0.01
99.6 0.0 7.0 0.01
96.5 0.3 9.9 0.14
99.4 0.1 13.1 0.06
95.8 0.4 19.6 0.52

34.0 2.1 2.0 0.01
95.0 0.3 3.0 0.01
04.7 0.3 5.0 0.03
90.8 0.6 6.9 0.11
93.3 0.4 9.8 0.17
01.3 0.1 13.1 0.11
92.7 0.5 19.2 0.82

28.7 1.4 2.0 0.01
20.9 6.0 3.1 0.09
95.0 0.3 4.9 0.05
26.9 1.3 7.2 0.21
98.1 0.1 10.0 0.05
78.6 1.1 12.2 0.76
98.2 0.1 19.9 0.10
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Fig. 15. Comparison of computed stress–strain curves to those given for E = 200 GPa using WC indenter [eo = (a) 0.001, (b) 0.002, (c) 0.003 and (d) 0.004].
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When b is a constant, Lee et al. (2008) obtained four
regression constants as follows:

b ¼ 1:067; DP=Pmax ¼ 20%; power law regression
1:101; DP=Pmax ¼ 80%; power law regression
1:058; DP=Pmax ¼ 20%; linear regression
0:987; DP=Pmax ¼ 80%; linear regression

ð9Þ

Here DP (=Pmax � P) is the difference between the maxi-
mum load at the maximum indentation depth and a cho-
sen indentation load on the unloading curve (Fig. 1).

When b is a function of Young’s modulus, b is given as
follows:

b ¼ c1 þ c2
E
EI

� �
ðc1; c2Þ ¼ ð1:051;0:04223Þ; DP=Pmax ¼ 20%;

power law regression
ð1:084;0:04576Þ; DP=Pmax ¼ 80%;

power law regression
ð1:043;0:04047Þ; DP=Pmax ¼ 20%;

linear regression
ð0:976;0:02196Þ; DP=Pmax ¼ 80%;

linear regression
ð10Þ

Lee et al. (2008) calculated the correction factor b from
Eq. (9) or (10), and obtain the Young’s modulus using Eq.
(8). Suggested methods successfully provide the value of
elastic modulus with maximum error of less than 5%.
4.2. Calculation of contact diameter

Lee et al. (2008) calculated the Young’s modulus by
using Eq. (8) and projected contact diameter measured at
unloading condition. In reality, it is difficult to measure
the contact diameter; inaccurately obtained contact diam-
eter can cause further error in the evaluation results. In this
study, the c2 values representing the amount of pile-up and
sink-in were obtained via the FE simulation, and then the
projected contact diameter was estimated. In this study,
the c2 is defined as follows:

c2 � ðhcjPmax
þ hgÞ=ðhmax þ hgÞ ¼ f cðeo;nÞ ð11Þ

Here hc is the actual contact indentation depth consid-
ering pile-up or sink-in (Fig. 2). Fig. 6 depicts the
relation between c2 and indentation depth for four
yield strains. The almost same c2 can be obtained for
various indentation depths although a considerable hg

(or tip radius R) is considered. The deviation of c2

within the chosen R/hmax ratios is less than 1%. When
hg is not considered ðc2 � hcjPmax

=hmaxÞ, the deviation of
hcjPmax

=hmax sharply increases with decreasing R/hmax

ratio. For h = 15hg, it becomes more than 4%. Fig. 7
depicts the variations of c2 with tip-radius R (R/hmax = 0,
0.5, 1.0) for various material properties. Fig. 7 shows
that c2 becomes uniform for the same indentation depth
regardless of tip radius, R/hmax = 0.5, 1.0, 2.0. Hence,
indentation depth and tip-radius does not effect on
value of c2.

Fig. 8 shows the distribution of the c2 for various mate-
rial properties from obtained FE analyses. We performed



Table 4
Comparison of computed Young’s moduli to those given for two different
indenter angles.

ro/E
ro (MPa)

n E70.3� E45�

Computed
E (GPa)

Error (%) Computed
E (GPa)

Error (%)

0.001 3 201.3 0.6 199.3 0.4
200 5 203.5 1.8 203.2 1.6

7 203.9 2.0 202.4 1.2
10 203.1 1.5 202.7 1.3

0.002 3 200.4 0.2 198.7 0.6
400 5 201.7 0.8 197.5 1.2

7 201.2 0.6 201.0 0.5
10 203.3 1.7 203.0 1.5

0.003 3 199.9 0.0 196.2 1.9
600 5 201.0 0.5 199.1 0.5

7 202.3 1.2 197.2 1.4
10 202.5 1.2 200.7 0.3

0.004 3 199.9 0.0 196.7 1.6
800 5 200.7 0.3 200.5 0.3

7 201.3 0.7 198.5 0.8

Table 5
Comparison of computed material properties with a diamond indenter to those g

ro/E
ro (MPa)

n Computed E (GPa) Error (%) Co

0.001 3 197.9 1.0 20
200 7 199.5 0.3 20

5 199.5 0.3 20
10 200.7 0.3 20

0.002 3 199.0 0.5 41
400 7 199.2 0.4 41

5 201.8 0.9 41
10 200.4 0.2 41

0.003 3 198.9 0.6 62
600 7 199.6 0.2 62

5 199.8 0.1 62
10 199.7 0.2 61

0.004 3 199.1 0.5 84
800 7 199.7 0.2 85

5 199.2 0.4 84
10 199.4 0.3 84

Table 6
Comparison of computed material properties for various R/hmax ratios to those giv

ro/E
ro (MPa)

R/hmax n Computed ro/E (MP

0.002 0.0 3 415.3/195.9
400 7 412.6/198.4

5 412.5/196.4
10 404.3/197.2

0.5 3 404.8/200.4
7 397.9/202.0
5 401.9/201.0

10 398.5/203.3
1.0 3 391.5/202.8

7 388.5/204.5
5 389.0/205.8

10 398.5/205.4
1.5 3 381.7/207.4

7 385.2/207.1
5 388.3/206.5

10 395.6/207.1
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FE analyses of a total of 56 cases (yield strain eo: 7 � strain-
hardening exponent n: 8) with fixed Young’s modulus to
generate regression formulae (11). The WC conical inden-
ter with a half-included angle of 70.3� was used and the
maximum indentation depth, R/hmax, was 0.5. In Fig. 8, c2

value bigger than 1 means that pile-up occurs. The values
of c2 increase with strain hardening exponent and decrease
with yield stain. We selected the n and eo as the parameters
of regression function of c2 as described in Eq. (12). In this
study, the coefficients of c2 are first regressed on n for each
given eo, and then obtained coefficients are regressed on eo.
Appendix A shows the regression functions and
coefficients.
c2 ¼ f cðeo;nÞ ¼ f c
i ðeoÞn�i ¼ ðcije

j
oÞn�i;

i; j ¼ 0;1;2;3;4 ðAppendix AÞ ð12Þ

The regression lines of c2 for various material properties
are presented in Fig. 8.
iven.

mputed ro (MPa) Error (%) Computed n Gap

5.8 2.9 3.0 0.01
1.5 0.7 5.0 0.01
1.5 0.7 7.0 0.03
2.7 1.3 10.1 0.13

5.9 4.0 3.1 0.08
4.4 3.6 5.1 0.10
3.8 3.4 7.0 0.03
0.9 2.7 10.5 0.45

2.4 3.7 3.1 0.10
4.7 4.1 5.1 0.14
3.5 3.9 7.3 0.35
5.1 2.5 10.4 0.45

6.1 5.8 3.2 0.15
0.7 6.3 5.3 0.27
6.5 5.8 7.4 0.38
3.3 5.4 10.4 0.42

en.

a/GPa) Error (%) Computed n Gap

3.8/2.1 3.0 0.04
3.2/0.8 5.2 0.17
3.1/1.8 7.1 0.14
1.1/1.4 10.2 0.18
1.2/0.2 3.0 0.01
0.5/1.0 5.0 0.04
0.5/0.5 7.0 0.04
0.4/1.7 10.0 0.02
2.1/1.4 3.0 0.04
2.9/2.2 4.9 0.09
2.7/2.9 6.8 0.22
0.4/2.7 10.0 0.01
4.6/3.7 2.9 0.06
3.7/3.5 4.8 0.19
2.9/3.3 6.9 0.14
1.1/3.6 9.8 0.23
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Knowing ht (=hmax + hg) and c2, we can obtain projected
contact diameter d by the geometrical relation of conical
indenter as follows:

d ¼ 2c2ht tan a ¼ 2f cðeo; nÞðhmax þ hgÞ tan a ð13Þ

Note that d becomes a function of c2, and thereby a func-
tion of material properties eo and n. Using Eqs. (12) and
(13), we can express Eq. (8) as

E ¼ ð1� m2Þ
2ðtan aÞhtbf cðeo;nÞ=S1 � ð1� m2

I Þ=EI
ð14Þ

Here S1 is initial slope of unloading curve obtained from
70.3� indenter.

4.3. Dual conical indentation techniques for material
properties evaluation

We observed the variation of coefficient C with material
properties using two indenters of half-included angle
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Fig. 16. Comparison of stress–strain curves computed by two parameter regres
SCM4, (b) Al6061, (c) Brass, (d) SS400, (e) J2 and (f) API-X65.
70.3�, 45� respectively. To minimize the tip radius effect,
based on Lee et al. (2008)’s observation, the C values were
regressed by using the data ranged upper 50% of the
maximum indentation depth hmax.

Fig. 9 represents the distribution of coefficient C with
yield strain and strain hardening exponent. In Fig. 9, the
maximum value of C/E is normalized to unity. As the differ-
ence of intersection angle of contours is getting smaller, it
becomes harder to distinguish the material properties
although two indenters with different angle are used. As
the intersection angle contoured from the two indenters is
getting bigger, the properties can be more easily indentified.
We calculated the gradients of contours and the angles
between the gradients as shown in Fig. 10. Since strain
hardening exponents of materials are generally greater
than 2, it would be fair to state that most materials can
be distinguished by the dual indentation tests. Noted that
Chen et al. (2007) did not show clearly the applicable
range of multiple indentation method, but we definitely
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demonstrated the sensitivity of the predicted material
properties for the two indenter angles, a = 70.3� and 45�.

Fig. 11a and b shows the distribution of coefficient C
with yield strain eo, strain hardening exponent n when
half-included angles of the tungsten carbide (WC) conical
indenter are 70.3� and 45�; the indentation depth R/
hmax = 0.5. We performed FE analyses of a total of 294 cases
(Young’s modulus E: 3� yield strain eo: 7� strain-hardening
exponent n: 7 � half-included angle a: 2). The values of
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Fig. 17. Errors of computed material property values (a) E, (b) ro and (c) n
to those given (2% increases of C1 and C2).
coefficient C obtained from FE analysis for various eo and
n are regressed to dimensionless formula normalized with
elastic modulus E. The regression method is the same as
Eq. (12). The final regression function is a polynomial in
the form of Eq. (15). The coefficients and regression curves
of Eq. (15) are given in Appendix A.

Ci=E ¼ f C
i ðeo;nÞ ¼ f C

ij ðeoÞn�j ¼ ðdijkek
oÞ;n�j; i

¼ 1;2; j; k ¼ 0;1;2;3;4 ðAppendix AÞ ð15Þ
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Fig. 18. Errors of computed material property values (a) E, (b) ro and (c) n
to those given (2% decreases of C1 and C2).



Table 7
Sensitivity of the estimated mechanical properties to variation in the Kick’s law coefficient.

Dual conical indentation

0% in C +2% in C1,2 �2% in C1,2

Ave. error (%) SD (%) Ave. error (%) SD (%) Ave. error (%) SD (%)

E 0.72 0.72 1.13 2.27 0.78 0.64
ro 0.94 1.02 4.80 5.60 4.50 0.94
n 1.42 1.70 3.68 7.11 3.88 3.74

326 H.C. Hyun et al. / Mechanics of Materials 43 (2011) 313–331
Here i = 1, 2 represents 70.3� and 45� respectively. As C1

and C2 in Eq. (15) can be determined by the dual indenta-
tion tests, Eq. (15) becomes the nonlinear simultaneous
equations for eo and n.

Substituting Eq. (14) into Eq. (15) leads to the
followings:

C1 ¼ Ef C
1ðeo;nÞ ¼

f C
1 ðeo;nÞ

Mf cðeo;nÞ � N
;

Fðeo;nÞ �
f C
1 ðeo;nÞ

Mf cðeo;nÞ � N
� C1 ¼ 0

C2 ¼ Ef C
2ðeo;nÞ ¼

f C
2 ðeo;nÞ

Mf cðeo;nÞ � N
;

Gðeo;nÞ �
f C
2 ðeo;nÞ

Mf cðeo;nÞ � N
� C2 ¼ 0

M ¼ 2ðtan aÞhtb
S1ð1� m2Þ ; N ¼ ð1� m2

I Þ
EIð1� m2Þ :

ð16Þ

We calculate eo and n which satisfy F = 0 and G = 0 of Eq.
(16) using Newton–Raphson method. Based on the contact
diameter at unloaded state, Lee et al. (2008) calculated
b = 1.058 by linear fitting for the 20% unloading range.
Meanwhile, Dao et al. (2001) used b = 1.06 in conical
indentation. However, it is a very difficult that we measure
the accurate contact diameter at unloading state. We can
predict the actual contact diameter at unloading state,
and calculate the more accurate b. In Eq. (8), we used b ob-
tained by linear fit for 20% of unloading data. Fig. 12 shows
the distribution of b obtained with linear fitting for various
values of eo and n. The deviation of b is less than 2% irre-
spective of chosen material properties, b can be regarded
as a constant. We adopt the mean value of b = 1.068 which
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Fig. 19. P=Eh2
max vs. h/hmax curves for four different friction coefficients.
is obtained in E = 200 GPa. Our b value is quite consistent
with the other suggested material properties. Furthermore,
it is very accurate for widely eo and n scope.

Using Eqs. (16), we established an evaluation program
providing material properties and corresponding stress–
strain curve from load–displacement curves of dual conical
indentation tests as shown in Fig. 13. First, we obtain the
Kick’s law coefficient C1 and C2 from load–displacement
curves using two different indenters. We first set up the
initial value of eo and n; then, we find the new eo and n
using Eq. (16). Substituting this value for Eq. (14), we cal-
culate the Young’s modulus E. Although evaluation pro-
gram providing material properties is based on
E = 200 GPa, the program is still effective for other elastic
moduli, because the relative ratio (=yield strain, eo) is more
important indentation parameter than absolute values of
elastic modulus and yield strength (Fig. 14). The obtained
material properties are compared with those used for finite
element analyses in Table 3. The average error of predicted
material properties is less than 1%, and maximum error is
about 5%. Fig. 15 shows predicted and given material
curves for various material properties. The solid line is
the material curve used for FEA, and the symbol is the pre-
dicted stress–strain curve. These figures show the valida-
tion of new approach for various values of n and eo.

In this study, we calculated the elastic modulus E by
using Eq. (8). Here, the values for S and d were obtained
from FE analysis using the 70.3� indenter. The projected
contact diameter is a function of material properties, tip-
radius and indenter angle. The contact diameter d as well
as S depends on the indent angle a. If the contact diameters
for various material properties using the 45� indenter are
obtained from FE analyses, we can also predict the E45�.
Although the predicted values for E45� and E70.3� using Eq.
(8) and (13) should be equal, their values vary slightly,
although the difference is virtually negligible, due to errors
Table 8
Comparison of Pmax values for various values of friction coefficient.

E = 200 GPa, ro = 400 MPa, n = 10, R/hmax = 0.5

a (�) f Pmax Gap (%)

70.3 0.1 129.9 1.2
0.2 128.5 0.1
0.3 128.4 –
0.5 128.4 0.1

45 0.1 25.7 7.6
0.2 27.2 2.2
0.3 27.8 –
0.5 27.7 0.4



Table 9
Comparison of computed material property values to those given for various values of friction coefficient.

ro/E
ro (MPa)

n f Computed ro/E (MPa/GPa) Error (%) Computed n Gap

0.002 3 0.1 531.1/194.5 32.8/2.8 3.8 0.8
400 0.2 432.0/196.4 8.0/1.8 3.2 0.2

0.3 404.8/200.4 1.2/0.2 3.0 0.0
5 0.1 521.7/195.6 30.4/2.2 8.5 3.5

0.2 428.3/198.5 7.1/0.7 5.6 0.5
0.3 397.3/201.7 0.7/0.8 5.0 0.0

10 0.1 506.9/195.9 26.7/2.0 62.5 2.5
0.2 420.2/200.1 5.0/0.1 12.4 2.4
0.3 398.5/203.3 0.4/1.7 10.0 0.0

0.004 3 0.1 993.9/193.7 24.2/3.2 3.8 0.8
800 0.2 844.1/196.4 5.5/1.8 3.2 0.2

0.3 797.8/199.9 0.3/0.0 3.0 0.0
5 0.1 983.0/196.4 22.9/1.8 8.2 3.2

0.2 810.7/198.1 1.3/1.0 5.3 0.3
0.3 794.6/200.7 0.7/0.3 5.0 0.0

10 0.1 960.9/201.0 20.1/0.5 61.9 51.9
0.2 795.7/201.3 0.5/0.7 10.7 0.7
0.3 788.0/201.5 1.5/0.8 9.7 0.3

0.006 3 0.1 1429.9/193.4 19.2/3.3 3.7 0.7
1200 0.2 1252.0/196.0 4.3/2.0 3.2 0.2

0.3 1202.6/200.1 0.2/0.1 3.0 0.0
5 0.1 1418.7/195.3 18.2/2.4 7.9 2.9

0.2 1199.1/197.6 0.1/1.2 5.2 0.2
0.3 1201.0/200.2 0.1/0.1 5.0 0.0

10 0.1 1434.5/196.9 19.5/1.5 118.4 108.4
0.2 1181.9/198.3 1.5/0.8 10.1 0.1
0.3 1196.5/200.4 0.3/0.2 9.9 0.1

0.008 3 0.1 1839.3/193.4 15.0/3.3 3.7 0.7
1600 0.2 1632.3/194.4 2.0/2.8 3.1 0.1

0.3 1595.0/199.6 0.3/0.2 3.0 0.0
5 0.1 1792.1/195.2 12.0/2.4 7.1 2.1

0.2 1583.6/197.1 1.0/1.5 5.2 0.2
0.3 1604.7/199.8 0.3/0.1 5.0 0.0

10 0.1 1876.6/196.8 17.3/1.6 93.4 83.4
0.2 1544.0/197.3 3.5/1.3 9.4 0.6
0.3 1593.3/199.7 0.4/0.2 9.8 0.2

Fig. 20. Overall mesh design for 1/6 Berkovich indenter.
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in the numerical calculation. However, the important thing
is their accuracy. The average error of the predicted E45� is
also less than 1% (Table 4). When we evaluate material
properties using diamond indenter (EI = 1000 GPa,
mI = 0.07), the obtained material properties are almost sim-
ilar to those of tungsten carbide indenter (EI = 537 GPa,
mI = 0.24) (Table 5). The blunted indenter tip may cause
nontrivial problems in evaluating material properties.
However, when tip-radii of indenters varies (R/hmax = 0,
0.5, 1, 1.5), the average errors for eo and n are less than
2% and 5% (Table 6). When C is calculated, the gap hg be-
tween indenters with zero and finite tip-radii can be deter-
mined by Eq. (2). Therefore, the finite tip-radius effect can
be eliminated in the loading curve.

4.4. Evaluation of material properties by using experimentally
obtained stress–strain curves

We performed the tensile and compression tests
according to ASTM E8 to obtain tensile material properties.
Using an MTS tensile testing system, we carried out tensile
tests for round bar specimens (diameter: 6 mm) by 3 mm/
min. We tested six different metallic materials: SCM4,
Al6061, Brass, J2, SS400, and API-X65. We carried out the
indentation test via FE analysis with the tensile testing
data inputted. The stress–strain curves obtained from ten-
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sile and indentation are compared in Fig. 16. Solid lines are
obtained by tensile tests, the symbols are obtained by dual
indentation tests. The predicted stress–strain curves al-
most agree well with given stress–strain curve except for
Brass. The difference of yield strength between predicted
(108 MP) and given (156 MPa) for Brass are large. Due to
the limitation of power law expression of stress–strain
curve, the difference of yield strength between predicted
and given is large in the some materials not obeying power
law. Moreover, a material having a large Lüders strain such
as API-X65 shows a discrepancy in the early plastic region
of stress–strain curve (Hyun et al., 2008).

5. Sensitivity analysis

Load–displacement curves can vary depending on the
various conditions of experiment. It is therefore necessary
to examine the sensitivity of evaluated material properties.
Chollacoop et al. (2003), Swaddiwudhipong et al. (2005)
and Harsono et al. (2009) reported that experimental
scatter for Kick’s law coefficient C is about 2%. We thus
changed the value of C ±2% obtained from FEA with half-
included angles 70.3� and 45�, and estimated the values
of material properties. We confirmed the errors of pre-
dicted material properties with Kick’s law coefficients for
various material properties, eo = 0.001, 0.002, 0.004,
0.006, 0.008 and n = 2, 3, 5, 7, 10, 13, 20. Fig. 17a–c depicts
the error of elastic modulus, yield strength, and the gap of
strain-hardening exponent, respectively when the C1 and
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Fig. 21. Comparison of the P–h curves of conical and Berkovich inden-
tations for four different yield strains.
C2 are artificially increased simultaneously. On the other
hand, Fig. 18a–c show the error of predicted material prop-
erties when the C1 and C2 are decreased simultaneously. In
Figs. 17a and 18a, the maximum errors of predicted E are
less than 3% regardless of variation in C. However, ro

shows the rather strong sensitivity to variation in C than
E in Figs. 17b and 18b. When we increase or decrease the
values of C1 and C2 simultaneously, mean errors of esti-
mated values are less than 10%. However, when C1 is in-
creased (or decreased) and C2 is decreased (increased),
the average of the error of the yield stress becomes about
20%. It should be mentioned that an indention system will
tend to only overestimate or underestimate for the two
consecutive tests because the test condition will be similar.
Therefore, we can conclude that the proposed method has
weak sensitivity to perturbation in input parameters, C1,
C2. Table 7 shows the average errors and their standard
deviations (SD).

Fig. 19 shows the load–depth curves for various values
of friction coefficient (f = 0.1, 0.2, 0.3 and 0.5). Table 8
shows the gap of maximum load Pmax with Pmax|f=0.3 as
the base value. The load–depth curves for f = 0.2–0.5 are
similar to that for f = 0.3. However, the load–depth curve
for f = 0.1 is notably different, which may result in signifi-
cant errors in material properties. We thus verify that the
evaluation program established with f = 0.3 is valid for
f = 0.1, 0.2. Table 9 represents predicted material proper-
ties for f = 0.1, 0.2 and 0.3. The errors of predicted elastic
modulus are less than 4% regardless of friction coefficient.
G
ap

 (
C

/E
, %

)

0

2

4

6

8

0.004
0.003
0.002
0.001

α = 70.3o,  E = 70 GPa

εo

(a) 

1/n
0.0 0.1 0.2 0.3 0.4 0.5

G
ap

 (
P

m
ax

, %
)

0

2

4

6

8

0.004
0.003
0.002
0.001

α = 70.3o,  E = 70 GPa

εo

(b) 

Fig. 22. Differences between conical and Berkovich indenters for (a) C/E
and (b) Pmax.



Table A.1
Values of cijk regressed from various eo and n by 4th order equation.

k = 0 k = 1 k = 2 k = 3 k = 4

i = 1, Half-included angle a = 70.3�
j = 0 1.237e+0 �5.521e�1 4.756e�1 �2.850e�1 9.162e�2
j = 1 �1.232e+0 1.028e+0 4.083e�1 �4.614e�1 �1.116e�1
j = 2 2.458e+0 �2.798e+0 1.422e+0 �3.639e+0 2.947e+0
j = 3 �3.914e+0 8.144e+0 �1.474e+1 2.079e+1 �1.087e+1
j = 4 2.223e+0 �6.176e+0 1.343e+1 �1.770e+1 8.536e+0

Table A.2
Values of dijk regressed from various eo and n by 4th order equation.

k = 0 k = 1 k = 2 k = 3 k = 4

i = 1, Half-included angle a = 70.3�
j = 0 2.619e�4 1.132e+0 �7.664e�1 4.523e�1 �1.277e+1
j = 1 1.336e�1 2.179e+0 �4.100e+0 3.800e+0 �1.288e+0
j = 2 2.535e�1 2.050e+0 �2.562e+0 2.213e+0 �1.429e+0
j = 3 6.103e�1 3.743e+0 �1.732e+1 1.839e+1 �5.373e+0
j = 4 9.178e�1 �9.417e+0 2.541e+1 �2.541e+1 8.362e+0

i = 2, Half-included angle a = 45�
j = 0 �7.811e�4 1.415e�1 �4.288e�2 1.785e�2 �5.928e�3
j = 1 2.981e�2 4.983e�1 �6.042e�1 2.719e�1 �1.192e�2
j = 2 �2.875e�2 5.536e�1 �1.468e+0 2.376e+0 �1.210e+0
j = 3 2.418e�1 1.860e+0 �4.404e+0 2.865e+0 �4.754e�1
j = 4 2.981e�1 �3.172e+0 6.703e+0 �5.658e+0 1.735e+0
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For f = 0.2, the errors in ro are less than 10%. For f = 0.1,
however, the maximum error in ro is about 30%, and the
errors in n also become significant. The proposed method
based on f = 0.3 is valid for f > 0.2, and therefore further
study is required.
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Fig. A.1. The regression curves of fc in Eq. (11) vs. yield strain.
6. Difference between conical and Berkovich indenters

The 70.3� conical indenter theoretically has the same
cross-sectional area-to-depth ratio as Berkovich indenter.
Due to difference of actual contact area and contact stiff-
ness, the load–depth curves of both Berkovich and its
equivalent conical indenters are not identical (Shim et al.,
2007). We compared the load–depth curves obtained from
2D conical indenter and 3D Berkovich indenter. Consider-
ing geometrical symmetry, we made the 1/6 Berkovich in-
denter model using the 8-node brick element C3D8
(ABAQUS, 2007). FE model consists of about 36,000 8-node
brick elements (C3D8) and 45,000 nodes (Fig. 20). In an
inclination surface of 60� for x axis, the ratio of displace-
ments between x and y axis should be maintained as
1 :

ffiffiffi
3
p

. The indenter downs to penetrate the material with
the bottom of the specimen fixed.

When E and R/hmax are 70 GPa and 0, respectively, we
observed the variations of the load–depth curves with
strain hardening exponents (n = 3, 13) and yield strains
(eo = 0.001, 0.002, 0.003, 0.004) (Fig. 21). As the n decreases
and the eo increases, the difference between the load–depth
curves obtained from conical and Berkovich indenters
increases. The maximum differences of C/E and Pmax values
between conical and Berkovich are about 5% (Fig. 22).
Therefore, it should be investigated the causes of the
difference, and further study on the theory of Berkovich
indentation is needed.
7. Summary

In this paper, we suggested the reverse algorithm for
evaluation of material properties using the dual conical
indentation. The proposed method successfully provides
the value of material properties with the maximum error
of less than 5%, regardless of tip-radius and materials prop-
erties. As mentioned in review section, while other
researchers have used the concept of the representative,
we provide the indentation formulae through the multi
regression of material properties, ro/E (=eo) and n without
the definition of representative values.

We observed the effect of conical indenter angle on
indentation load–depth curves via finite element analyses.
We investigated then the relations among elastic modulus,
yield strength, strain hardening exponent, and load–depth
curve, and we confirmed that yield strain and strain
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hardening exponent are major parameters. We presented
then the Kick’s law coefficient with indenter angle as
function of yield strain and strain hardening exponent. To
calculate the contact diameter, we introduced the dimen-
sionless parameter c2, which is defined as the ratio of the
tip-corrected indentation contact depth to the tip-corrected
maximum depth, and then expressed it as a function of
material properties. Using the c2 and geometrical relation
of conical indenter, we obtained numerical formula for
evaluation of Young’s modulus. Finally, we suggested an
effective numerical approach for evaluation of yield
strength and strain-hardening exponent using the dual
conical indentation through the combination of numerical
formulae. The proposed method is valid in wide range
of materials properties, especially which have frictional
coefficient bigger than 0.2, and the method shows weak
sensitivity to perturbation of input parameters, C1, C2. In
addition, the difference of load–depth curves obtained from
a conical indenter and Berkovich indenter is discussed.
Further studies on the effect of friction coefficient and
the types of indenters are required.
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Appendix A

The coefficient values of regression functions of Eqs.
(11) and (14) (see Tables A.1 and A.2, Figs. A.1 and A.2).

References

ABAQUS User’s Manual, 2007. Version 6.7, Hibbitt, Karlsson and Sorensen,
Inc., Pawtucket, RI.

Borodich, F.M., Keer, L.M., Korach, C.S., 2003. Analytical study of
fundamental nanoindentation test relations for indenter of non-
ideal shapes. Nanotechnology 14, 803–808.

Borodich, F.M., Keer, L.M., 2004. Contact problems and depth-sensing
nano-indentation for frictionless and frictional boundary conditions,
Int. J. Solids. Struct. 41, 2479–2499.

Bucaille, J.L., Stauss, S., Felder, E., Michler, J., 2003. Determination of
plastic properties of metals by instrumented indentation using
different sharp indenters. Acta Mater. 51, 1663–1678.
Cao, Y.P., Lu, J., 2004. Depth-sensing instrumented indenters: stability
analysis and corresponding regularization schemes. Acta Mater. 52,
1143–1153.

Capehart, T.W., Cheng, Y.-T., 2003. Determination constitutive models
from conical indentation: sensitivity analysis. J. Mater. Res. 18, 827–
832.

Chaudhri, M.M., 1998. Subsurface strain distribution around Vickers
hardness indentations in annealed polycrystalline copper. Acta Mater.
46, 3047–3056.

Chen, W.W., Zhou, K., Keer, L.M., Wang, Q.J., 2010. Modeling elasto-plastic
indentation on layered materials using the equivalent inclusion
method. Int. J. Solids. Struct. 47, 2841–2854.

Chen, X., Ogasawara, N., Zhao, M., Chiba, N., 2007. On the uniqueness of
measuring elastoplastic properties from indentation: the
indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618–
1660.

Chen, X., Yan, J., Karlsson, A.M., 2006. On the determination of residual
stress and mechanical properties by indentation. Mater. Sci. Eng (A)
416, 139–149.

Cheng, Y.T., Cheng, C.M., 1998. Scaling approach to conical indentation in
elasto-plastic solids with work hardening. J. Appl. Phys. 84, 1284–
1291.

Chollacoop, N., Dao, M., Suresh, S., 2003. Depth-sensing instrumented
indentation with dual sharp indenters. Acta Mater. 51, 3713–
3729.

Cook, R.F., Pharr, G.M., 1990. Direct observation and analysis of
indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73,
787–817.

Dao, M., Chollacoop, N., Vliet, J.V., Venkatesh, T.A., Suresh, S., 2001.
Computational modeling of the forward and reverse problems in
instrumented sharp indentation. Acta Mater. 49, 3899–3918.

Giannakopoulos, A.E., Larsson, P.-L., 1997. Analysis of pyramid
indentation of pressure-sensitive hard metals and ceramics. Mech.
Mater. 25, 1–35.

Giannakopoulos, A.E., Suresh, S., 1999. Determination of elastoplastic
properties by instrumented sharp indentation. Scripta Mater. 40,
1191–1198.

Harsono, E., Swaddiwudhipong, S., Liu, Z.S., 2009. Materials character-
ization based on simulated spherical-Berkovich indentation test.
Scripta Mater. 60, 972–975.

Huber, N., Tsakmakis, C., 1999a. Determination of constitutive properties
from spherical indentation data using neural networks. Part I: the
case of pure kinematic hardening in plasticity laws. J. Mech. Phys.
Solids 47, 1569–1588.

Huber, N., Tsakmakis, C., 1999b. Determination of constitutive properties
from spherical indentation data using neural networks. Part II:
plasticity with nonlinear isotropic and kinematic hardening. J.
Mech. Phys. Solids 47, 1589–1607.

Hyun, H.C., Lee, J.H., Lee, H., 2008. Mathematical expressions for
stress–strain curve of metallic material. Trans. KSME 32, 21–
28.

Kermouche, G., Loubet, J.L., Bergheau, J.M., 2008. Extraction of stress–
strain curves of elastic–viscoplastic solids using conical/pyramidal
indentation testing with application to polymers. Mech. Mater. 40,
271–283.

Lan, H., Venkatesh, T.A., 2007. Determination of the elastic and plastic
properties of materials through instrumented indentation with
reduced sensitivity. Acta Mater. 55, 2025–2041.

WSChoi
강조



H.C. Hyun et al. / Mechanics of Materials 43 (2011) 313–331 331
Le, M., 2008. A computed study on the instrumented sharp indentations
with dual indenters. Int. J. Solids. Struct. 45, 2818–2835.

Le, M., 2009. Materials characterization by dual indenter. Int. J. Solids.
Struct. 46, 2988–2998.

Lee, H., Lee, J.H., Pharr, G.M., 2005. A numerical approach to spherical
indentation techniques for material property evaluation. J. Mech.
Phys. Solids 53, 2037–2069.

Lee, J.H., Kim, T., Lee, H., 2010. A study on robust indentation techniques
to evaluate elastic–plastic properties of metals. Int. J. Solids. Struct.
47, 647–664.

Lee, J.H., Lee, H., Kim, D.H., 2008. A numerical approach to elastic modulus
evaluation using conical indenter with finite tip radius. J. Mater. Res.
23, 2528–2537.

Liao, Y., Zhou, Y., Huang, Y., Jiang, L., 2009. Measuring elastic–plastic
properties of thin films on elastic–plastic substrates by sharp
indentation. Mech. Mater. 41, 308–318.

Ogasawara, N., Chiba, N., Chen, X., 2005. Representative strain of
indentation analysis. J. Mater. Res. 20, 2225–2234.

Ogasawara, N., Chiba, N., Chen, X., 2006a. Limited analysis-based
approach to determine the material plastic properties with conical
indentation. J. Mater. Res. 21, 947–957.

Ogasawara, N., Chiba, N., Chen, X., 2006b. Measuring the plastic properties
of bulk materials by single indentation Test. Scripta Mater. 54,
65–70.

Ogasawara, N., Chiba, N., Chen, X., 2009. A simple framework of spherical
indentation for measuring elastoplastic properties. Mech. Mater. 41,
1025–1033.

Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining
hardness and elastic modulus using load and displacement sensing
indentation experiments. J. Mater. Res. 7, 1564–1583.
Pharr, G.M., Oliver, W.C., Brotzen, F.R., 1992. On the generality of the
relationship among contact stiffness, contact area and elastic
modulus during indentation. J. Mater. Res. 7, 613–617.

Rice, J.R., Rosengren, G.F., 1968. Plane strain deformation near a crack-tip
in a power law hardening material. J. Mech. Phys. Solids 16, 1–12.

Shim, S., Jang, J., Pharr, G.M., 2008. Extraction of flow properties of single-
crystal silicon carbide by nanoindentation and finite-element
simulation. Acta Mater. 56, 3824–3832.

Shim, S., Oliver, W.C., Pharr, G.M., 2007. A comparison of 3D finite element
simulation for Berkovich and conical indentation of fused silica. Int. J.
Surf. Sci. Eng. 1, 259–273.

Sneddon, I.N., 1965. The relation between load and penetration in the
axisymmetric Boussinesq problem for a punch of arbitrary profile. Int.
J. Eng. Sci. 3, 47–57.

Suresh, S., Giannakopoulos, A.E., 1998. A new method for estimating
residual stresses by instrumented sharp indentation. Acta Mater. 46,
5755–5767.

Swaddiwudhipong, S., Tho, K.K., Liu, Z.S., Zeng, K., 2005. Material
characterization based on dual indenters. Int. J. Solids. Struct. 42,
69–83.

Tabor, D., 1951. The Hardness of Metals. Oxford University Press.
Taljat, B., Zacharia, T., Kosel, F., 1997. New analytical procedure to

determine stress–strain curve from spherical indentation data. Int. J.
Solids. Struct. 35, 4411–4426.

Tho, K.K., Swaddiwudhipong, S., Liu, Z.S., Zeng, K., Hua, J., 2004.
Uniqueness of reverse analysis from conical indentation test. J.
Mater. Res. 19, 2498–2502.

Xia, S.M., Gao, Y.F., Bower, A.F., Lev, L.C., Cheng, Y.-T., 2007. Delamination
mechanism maps for a strong elastic coating on an elastic–plastic
substrate subjected to contact loading. Int. J. Solids 44, 3685–3699.


	A dual conical indentation technique based on FEA solutions for  property evaluation
	1 Introduction
	2 Finite element analysis
	3 Characteristics of indentation deformation
	3.1 Deformation under indenter and characteristic of load–depth curves
	3.2 Characteristic of load–depth curves with indenter angles

	4 Indentation numerical approach based on finite element analysis solution
	4.1 Numerical formulas for young’s modulus evaluation
	4.2 Calculation of contact diameter
	4.3 Dual conical indentation techniques for material properties evaluation
	4.4 Evaluation of material properties by using experimentally obtained stress–strain curves

	5 Sensitivity analysis
	6 Difference between conical and Berkovich indenters
	7 Summary
	Acknowledgments
	Appendix A
	References


